C onformationally locked carbocyclic nucleosides built on a bicyclo[3.1.0]hexane template with a fixed Southern conformation. Synthesis and antiviral activity

A bdallah E zzitouni and V ictor E. M arquez*
L aboratory of M edicinal Chemistry, Division of Basic Sciences, N ational C ancer Institute, N ational Institutes of H ealth, B ethesda, M aryland 20892, U SA

The construction of carbocyclic nucleosides with a fixed ${ }_{3} E$ ring pucker in the Southern hemisphere of the pseudorotational cycle is achieved from a common precursor carbocyclic amine, ($15,3 \mathrm{~S}, 4 \mathrm{R}, 5 \mathrm{~S}$)-3-benzyloxy-4-benzyloxymethyl-1-aminobicyclo[3.1.0]hexane 20. This carbocyclic amine is efficiently assembled from optically pure 2-benzyloxymethylcyclopent-3-enol 11 in ten steps. The key cyclopropanation step is performed on (3R ,4S)-1-cyano-4-benzyloxy-3-(benzyloxymethyl)cyclopentane 15, and proceeds regio- and stereo-selectively to give the critical cyanocarbocyclic intermediate 17 from which the amine 20 is subsequently obtained. Synthesis of the pyrimidine analogues 6-8 is accomplished via the intermediate acyclic acryloylureas 21 and 22. Preparation of purines 9 and 10 required prior N -formylation of the corresponding 4,6-dichloro-5-aminopyrimidine and 4,6-dichloro-2,5-diaminopyrimidine heterocyclic precursors for efficient coupling with amine 20. Except for (S)-2'-deoxy-methanocarba-A (9, the 2'-deoxyadenosine analogue), all Southern conformers appear to be devoid of antiviral activity.

Introduction

Carbocyclic nucleosides built on a bicyclo[3.1.0]hexane template have a rigid pseudosugar ring that results in compounds with either a fixed N orthern ${ }_{2} \mathrm{E}$ ($\mathrm{C} 2^{\prime}$-exo) or Southern ${ }_{3} \mathrm{E}$ ($\mathrm{C} 3^{\prime}$ exo) conformation, as defined in the pseudorotational cycle, ${ }^{1}$ depending on the disposition of the base and the hydroxymethyl group. Syntheses of the N orthern rigid conformers bearing all common bases (1-5) have been accomplished recently, ${ }^{2}$

1, $B=$ thymine $[(N)$-methanocarba $-T]$ 2, $\mathrm{B}=$ uracil $\quad[(\mathrm{N})-2$ 'd-methanocarba-U] 3, $B=$ cytosine $[(N)-2 ' d-m e t h a n o c a r b a-C]$ 4, $B=$ adenine $[(N)-2 ' d$-methanocarba- $A]$ $5, B=$ guanine $[(N)-2$ 'd-methanocarba-G]

3E (C3'-exo, South)
6, $B=$ thymine $[(S)$-methanocarba- $T]$
7, $\mathrm{B}=$ uracil $\quad[(\mathrm{S})-2$ 'd-methanocarba-U]
8, $B=$ cytosine $[(S)-2$ 'd-methanocarba-C]
9, $B=$ adenine $[(S)-2$ 'd-methanocarba-A]
10, $B=$ guanine $[(S)-2$ 'd-methanocarba-G]
and among these, the thymidine $[(N)$-methanocarba-T, 1$]{ }^{2,3} 2^{\prime}-$ deoxycytidine [(N)-2'-deoxy-methanocarba-C, 3] ${ }^{4}$ and 2^{\prime}-deoxyadenosine $\left[(N)\right.$-2'-deoxy-methanbocarba-A, 4] ${ }^{5}$ analogues have shown exceptional antiviral activities. A mong the corresponding pseudorotational antipodes, only the Southern thymidine analogue 6 [(S)-methanocarba-T] has been reported, ${ }^{6,7}$ and a recent comparison between $\mathbf{1}$ and $\mathbf{6}$ revealed that the latter was devoid of the strong antiherpetic activity characteristic of $\mathbf{1 .}^{2}$ In an effort to expand the scope of our investigation to the rest of the Southern conformers, we now describe their syntheses, which are based on a novel approach that was briefly communicated earlier for the thymidine analogue $6 .{ }^{7}$

Results and discussion

Synthesis

One of the virtues of the method of synthesis of 6^{7} was that it was centred around the stable carbamate derivative 19 of the parent carbocyclic amine 20, from which all the heterocyclic bases could be constructed (Scheme 1). The procedure to obtain

19 in optically pure form was based on the availability of cyclopentene 11, which represents an excellent homochiral starting material for accessing a variety of carbocyclic nucleosides. ${ }^{8,9}$ This compound, and the ensuing epoxides 12 and 13, were obtained as described. ${ }^{9}$ N ucleophilic opening of the epoxide ring occurred with excellent regioselectivity to give the cyano intermediate 14, from which the desired α, β-unsaturated nitrile 15 was obtained following the syn- β-elimination of the transitional thiocarbonylimidazolide. The 1,3-dipolar cycloaddition of diazomethane to $\mathbf{1 5}$ to give the cis-fused pyrazoline intermediate $\mathbf{1 6}$ occurred with the expected regioselectivity that is typical of diazomethane additions to electron deficient alkenes in which the carbon atom of diazomethane functions as the
negative end of the dipole. The stereofacial selectivity, on the other hand, appears to be controlled exclusively by the approach of the diazomethane from the less encumbered side of the double bond. With the stereochemistry of the cyano group secured, the desired bicyclo[3.1.0]hexane intermediate nitrile 17 was obtained after nitrogen extrusion from $\mathbf{1 6}$ by photolysis. In agreement with the pseudoboat conformation that is typical of bicyclo[3.1.0]hexane systems, ${ }^{10}$ the proton NM R spectrum and coupling constants of 17 were fully consistent with an α-fused cyclopropane ring. ${ }^{7}$ The nitrile function was converted to the protected carbocyclic amine derivative 19 following hydrolysis of $\mathbf{1 7}$ to the acid 18, and continuing with a modified Curtius rearrangement of the corresponding acyl azide to the isocyanate ${ }^{11}$ The reactive isocyanate intermediate was trapped with 2trimethylsilylethanol to give the stable carbamate 19, and the required carbocyclic amine $\mathbf{2 0}$ was generated from it prior to the construction of the corresponding heterocyclic bases in each instance.

The pyrimidine bases of $\mathbf{2 3}$ and $\mathbf{2 4}$ were constructed by acidcatalysed cyclization of the intermediate acryloylureas 21 and 22 (Scheme 2), which were generated by reacting 20 with 3 -

methoxy-2-methylacryloyl isocyanate and 3-ethoxyacryloyl isocyanate, respectively. ${ }^{12}$ Removal of the benzyl ethers by either catalytic transfer hydrogenation, or by treatment with BCl_{3}, afforded the pyrimidine targets (S)-methanocarba-T 6 and (S)-2'-deoxy-methanocarba-U 7. Fashioning the carbocyclic cytidine $\mathbf{2 5}$ from the uridine analogue $\mathbf{2 4}$ was achieved via aqueous ammonia hydrolysis of the corresponding triazole intermediate, which was prepared according to published methodology. ${ }^{13}$ Removal of the protective benzyl ethers from $\mathbf{2 5}$ gave the target (S)-2'-deoxy-methanocarba-C 8.

The purine bases in $\mathbf{7}$ and 10 were also assembled from carbocyclic amine $\mathbf{2 0}$ according to Scheme 3. Noteworthy is the fact that displacement of chloride from either 5-amino-4,6dichloropyrimidineor 2,5-diamino-4,6-dichloropyrimidinewith 20 occurred very poorly or not at all. H owever, excellent results were obtained after conversion of the pyrimidines to their respective formyl or diformyl derivatives to give 26 and 29 . An improvement in the efficiency of coupling of these bases upon formylation has been reported, and their preparation was performed as described. ${ }^{14}$ C losure of the imidazole ring of 26 was achieved by reaction with triethyl orthoformate and hydrochloric acid to afford the 6 -chloropurine derivative 27. Sub-

Scheme 3

sequent treatment of $\mathbf{2 7}$ with saturated methanolic ammonia, in a sealed tube, provided the adenine analogue 28, and following the removal of the benzyl ethers with boron trichloride, the target (S)-2'-deoxy-methanocarba-A 9 was obtained. R ing closure of the imidazole ring in $\mathbf{2 9}$ was performed by heating in the presence of diethoxymethyl acetate at $140^{\circ} \mathrm{C}$ to give compound 30. Tandem hydrolyses of $\mathbf{3 0}$ with formic acid and ammonium hydroxide provided the guanine ring 31, and removal of the benzyl ethers by catalytic transfer hydrogenation afforded the final (S)-2'-deoxy-methanocarba-G target 10.

Antiviral activity

Table 1 reveals an almost complete lack of antiviral activity for all Southern conformers, save for (S)-2'-deoxy-methanocarbaA 9 , whose anti-HCM V potency is slightly better than that of its Northern pseudorotational antipode, (N)-2'-deoxy-methanocarba-A 4. ${ }^{5}$ Indeed, the EC 50 value against HCM V for (S)-2'-deoxy-methanocarba-A 9 in the plaque reduction assay was $2.4 \mu \mathrm{~g} \mathrm{ml}^{-1}\left(\mathrm{SI}>41.7\right.$, Table 1) versus an EC ${ }_{50}$ of $5.6 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$ (SI > 17.9) measured for (N)-2'-deoxy-methanocarba-A $4 .^{5}$ This selective anti-HCM V activity of 9 is unusual and will be the subject of a future investigation. In general, the antiviral results reported here are preliminary and will be expanded to include other viruses. It is expected that as we gather more data, we will be able to draw important conclusions regarding the relationship between a fixed pseudosugar pucker and antiviral activity. These forthcoming results should be useful in the design of more potent and specific antiviral agents.

Experimental

All chemical reagents were commercially available M elting points were determined on a M el-Temp II apparatus, Laboratory Devices, USA, and are uncorrected. Column chromatography was performed on silica gel 60, 230-400 mesh (E. M erck) and analytical TLC was performed on A naltech U niplates silica gel GF. Proton and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC-250 instrument at 250 and 62.9 M Hz , respectively. J Values are given in Hz . Spectra were referenced to the solvent in which they were run ($\delta 7.24$ for CDCl_{3})

Table 1 Antiviral activity of Southern 2'-deoxy-methanocarbocyclic nucleosides

	Virus ${ }^{\text {a }}$ (H F F cells)	$\begin{aligned} & \mathrm{EC}_{50}{ }^{\mathrm{b}} \\ & \mu \mathrm{~g} \mathrm{ml} \end{aligned}$	$\begin{aligned} & \mathrm{CC}_{50}{ }^{\mathrm{c}} \\ & \mu \mathrm{~g} \mathrm{ml}^{-1} \end{aligned}$	$\mathrm{SI}^{\text {d }}$	Control ${ }^{\text {e }}$ $\left(\mathrm{EC}_{50} \mu \mathrm{~g} \mathrm{ml}^{-1}\right)$
6	H SV-1	$>50{ }^{\text {f }}$	>50	1	ACV (0.15)
6	H SV-2	$>50{ }^{\text {f }}$	>50	1	ACV (0.60)
6	HCM V	>20	70.5	<3.5	G CV (0.20)
7	H SV-1	>20	59.1	<3.0	ACV (0.20)
7	HSV-2	>20	59.1	<3.0	ACV (1.80)
7	HCM V	>100	>100	1	G CV (0.01)
8	HSV-1	>4.0	14.9	<3.7	ACV (0.20)
8	HSV-2	>4.0	14.9	<3.7	ACV (1.80)
8	HCM V	88.9	>100	>1.1	GCV (0.30)
9	H SV-1	>100	>100	1	ACV (0.20)
9	HSV-2	>100	>100	1	ACV (0.20)
9	HCM V	$2.4{ }^{\text {f }}$	>100	>41.7	G CV (0.20)
10	HSV-1	>20	75.0	<3.7	ACV (0.20)
10	H SV-2	>20	75.0	<3.7	ACV (1.80)
10	HCM V	>20	>20	1	GCV (0.01)

${ }^{\mathrm{a}} \mathrm{HFF}=$ human foreskin fibroblast; HSV-1 = herpes simplex type 1 HSV-2 = herpes simplex type 2; HCM V = human cytomegalovirus ${ }^{\mathrm{b}} \mathrm{EC}_{50}=$ inhibitory concentration required to reduce virus-induced cytopathogenicity or virus plaques by 50%. ${ }^{\mathrm{c}} \mathrm{CC}_{50}=$ cyctotoxic concentration that produces 50% of cell death. ${ }^{\text {d }} \mathrm{SI}=$ selectivity index $\left(\mathrm{CC}_{50}\right)$ EC_{50}). ${ }^{\mathrm{e}} \mathrm{ACV}=$ acyclovir control, GCV = gancyclovir control. ${ }^{\mathrm{f}}$ These values correspond to a plaque reduction assay.
unless stated otherwise. Specific rotations were measured in a Perkin-Elmer M odel 241 polarimeter and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Positive-ion fast-atom bombardment mass spectra (FABMS) were obtained on a VG 7070E mass spectrometer at an accelerating voltage of 6 kV and a resolution of 2000. G lycerol was used as the sample matrix and ionization was effected by a beam of xenon atoms. Elemental analyses were performed by Atlantic Microlab, Inc., N orcross, GA. Ether refers to diethyl ether and petrol refers to the fraction of light petroleum boiling in the range $35-60^{\circ} \mathrm{C}$.

(1S,2R , 3R , 4R)-1-Benzyloxy-2-benzyloxymethyl-4-cyano-3hydroxycyclopentane 14

A magnetically stirred solution of epoxide $\mathbf{1 3}^{9}(13.05 \mathrm{~g}, 42.04$ mmol) in acetonitrile ($150 \mathrm{~cm}^{3}$) was treated with KCN $(5.47 \mathrm{~g}$, $84.09 \mathrm{mmol})$ and $\mathrm{LiClO}_{4}(8.95 \mathrm{~g}, 84.09 \mathrm{mmol})$ under argon. The reaction was allowed to continue at $70^{\circ} \mathrm{C}$ for 20 h , but TLC analysis (silica gel, hexanes-EtOAc, 2:1) still revealed about 30% of unreacted starting material. Additional KCN (2.70 g , 42.04 mmol) and $\mathrm{LiClO}_{4}(4.5 \mathrm{~g}, 42.04 \mathrm{mmol})$ were added and stirring continued for two additional days to complete the reaction. A fter reaching room temperature conditions, water (200 cm^{3}) was added while stirring was continued, and the mixture was extracted with ether $\left(3 \times 200 \mathrm{~cm}^{3}\right)$. The organic phase was washed with brine $\left(2 \times 150 \mathrm{~cm}^{3}\right)$ until a neutral pH of the washings was obtained, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent under reduced pressure gave a residue which was purified by column chromatography (silica gel, hexanes-EtOAc, 4:1) to give compound 14 ($11 \mathrm{~g}, 77.5 \%$) as a light yellow syrup; $[a]_{0}^{24}+36.7$ (c 1.85 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3495,2575,2150$ and 1600 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right)$) $7.40-7.20(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.50(2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.95\left(2 \mathrm{H}, \mathrm{AB}\right.$ q, J 11.8, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.18(1 \mathrm{H}, \mathrm{t}$ J $8.0,3-\mathrm{H}$), $3.80(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.2,5.1$ CHHO), 3.50 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.2,6.8, \mathrm{CHHO}$), 3.05 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$) $2.70(1 \mathrm{H}, \mathrm{OH}), 2.25\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.5-\mathrm{H}^{\mathrm{a}}\right)$ and $2.05(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}^{\text {b }}$) (Found: C, 74.56; $\mathrm{H}, 6.80 ; \mathrm{N}, 4.19 . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N} \mathrm{O}_{3}$ requires C , 74.75; H , 6.87; N, 4.15\%).

(3R ,4S)-1-C yano-4-benzyloxy-3-benzyloxymethylcyclopentene

 15A stirred solution of $\mathbf{1 4}(1.62 \mathrm{~g}, 4.8 \mathrm{mmol})$ in DM F ($25 \mathrm{~cm}^{3}$) was treated with $1,1^{\prime}$-thiocarbonyldiimidazole ($1.0 \mathrm{~g}, 5.80 \mathrm{mmol}$) and D M AP ($0.88 \mathrm{~g}, 7.2 \mathrm{mmol}$) under argon. The reaction was allowed to continue at room temperature for 3 h , after which
time all the starting material had reacted. U pon heating at $70^{\circ} \mathrm{C}$ for 30 min , the ensuing β-syn elimination proceeded to completion. The mixture was cooled to room temperature and EtOAc $\left(200 \mathrm{~cm}^{3}\right)$ was added. A queous extraction of the organic layer $\left(3 \times 30 \mathrm{~cm}^{3}\right.$) was performed until a neutral pH of the washings was obtained. The organic layer was dried ($\mathrm{M} \mathrm{SSO}_{4}$) and evaporated to give an oily residue, which was purified by column chromatography (silica gel, 10% EtOA c-petrol) to give the vinyl cyanide deriative 15 ($1.51 \mathrm{~g}, 98 \%$) as a colourless syrup; $[a]_{0}^{24}$ +85.4 (c 2.8 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2875,2150$ and 1600 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e} \mathrm{ASi}^{2}\right) 7.40-7.25(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 4.3, 2.1, 2-H), 4.55-4.45 (4 H, singlets, $\mathrm{PhCH}_{2} \mathrm{O} \times 2$), $4.12(1 \mathrm{H}$, irregular quintet, 4-H), $3.45\left(2 \mathrm{H}, \mathrm{AB} \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.15(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}$), 2.95-2.83 ($1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 16.7,6.9,2.1,5-\mathrm{H}^{\mathrm{a}}$), 2.70-2.58 (1 H , dm, J 16.7, 5-H ${ }^{\text {b }}$) (Found: $\mathrm{C}, 78.88 ; \mathrm{H}, 6.65 ; \mathrm{N}, 4.32 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires C, 78.97; H , 6.63; N, 4.39\%).

(3aR , 4R ,5S,6aR)-4-B enzyloxymethyl-5-benzyloxy-6a-cyano-3,3a,4,5,6,6a-hex ahydrocyclopentapyrazole 16

A stirred solution of the vinyl cyanide $\mathbf{1 5}(9.2 \mathrm{~g}, 28.81 \mathrm{mmol})$ in chloroform ($50 \mathrm{~cm}^{3}$) was cooled to $0^{\circ} \mathrm{C}$. A freshly prepared solution of diazomethane in ether ($0.07 \mathrm{~m} ; 850 \mathrm{~cm}^{3}$) was slowly added, and stirring continued for three days at $0^{\circ} \mathrm{C}$ until the reaction was complete. The solvent was removed under reduced pressure and the resulting colourless syrup of hexahydrocyclopentapyrazole 16 ($10.04 \mathrm{~g}, 96.5 \%$) was used directly in the subsequent photolytic reaction without further purification; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 7.40-7.15(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}) 6.4$, $3-\mathrm{H}), 4.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 11.7, PhCH HO), 4.25 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.7$, PhCHHO), 3.90 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $3.40(2 \mathrm{H}, \mathrm{AB}$ d, J 5.5, $\mathrm{CH}_{2} \mathrm{O}$), 2.80-2.50 (3 H, m, 6-H, 3a-H), $2.15(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$.

(1S,3S,4R ,5S)-3-B enzyloxy-4-benzyloxymethyl-1-cyanobicyclo[3.1.0]hexane 17

A solution of $16(1.0 \mathrm{~g}, 2.76 \mathrm{mmol})$ in dry benzene-acetonitrile ($1: 1,20 \mathrm{~cm}^{3}$) containing benzophenone ($0.25 \mathrm{~g}, 1.38 \mathrm{mmol}$) as photosensitizer was irradiated in a Pyrex flask inside a Rayonet Photochemical reactor model R PR -100 ($4.5 \mathrm{~W}, 3500 \AA$) for 2 h . The solvent was removed under reduced pressure and the resulting yellow oil was purified by column chromatography (silica gel, 5\% EtOA c-petrol) to give compound 17 ($0.73 \mathrm{~g}, 79 \%$) as a colourless oil; $[a]_{b}^{24}+85.4$ (c $2.8 \mathrm{in} \mathrm{CHCl}_{3}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2875$, 2150 and 1600; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 7.40-7.20$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 4.51 and $4.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4,3-\mathrm{H}), 3.43$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.3,5.9, \mathrm{CH} H 0$), 3.33 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.3,7.2, \mathrm{CHHO}$), $2.50(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,4-\mathrm{H}), 2.30\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12.7,6.5,1.5,2-\mathrm{H}^{\beta}\right)$, 2.20 (1 H, d, J 12.7, 2-H ${ }^{\text {a }}$), 1.92 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5,5.0,5-\mathrm{H}$), 1.45 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.3,7-\mathrm{H}^{\text {endo }}$), 1.25 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 9.1,5.3,1.5,7-\mathrm{H}^{\text {exo }}$) (Found: $\mathrm{C}, 76.74 ; \mathrm{H}, 6.65 ; \mathrm{N}, 4.10 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2} \cdot 0.6 \mathrm{H}{ }_{2} \mathrm{O}$ requires C, 76.75; H, 7.08; N , 4.06\%).

(1S,3S,4R ,5S)-3-B enzyloxy-4-benzyloxymethylbicyclo[3.1.0]-hexane-1-carboxylic acid 18

A stirred solution of nitrile $\mathbf{1 7}$ ($1.50 \mathrm{~g}, 4.49 \mathrm{mmol}$) in methanol $\left(20 \mathrm{~cm}^{3}\right.$) was treated with NaOH (25% aqueous solution; 30 cm^{3}) and the reaction mixture was gently refluxed (oil bath, $90^{\circ} \mathrm{C}$) for 24 h . A fter cooling to room temperature and further cooling to $0^{\circ} \mathrm{C}$, the reaction mixture was acidified to pH 5 with $1 \mathrm{~m} \mathrm{HCl}\left(\mathrm{ca} .153 \mathrm{~cm}^{3}\right)$. Extraction of the mixture with EtOAc $\left(4 \times 150 \mathrm{~cm}^{3}\right)$ was followed by a second extraction $\left(2 \times 50 \mathrm{~cm}^{3}\right)$ after the aqueous layer was saturated with NaCl . The combined organic extract was further washed with brine $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ until a neutral pH of the washings was obtained. The organic solution was dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The resulting brownish syrup was dried under vacuum for 2 h to give compound 18 ($1.58 \mathrm{~g}, 99.68 \%$) as a viscous syrup. This compound was deemed pure enough to be used in the next step without further purification. An analytical sample of 18 (clear yellow syrup) was obtained after purification by flash chromatography (silica gel, $5 \% \mathrm{MeOH}$ in EtOAc); $[a]_{\mathrm{D}}^{24}-70.3$
(c 0.4 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3400-3200,2930,1678$ and 1601; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 7.40-7.10(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.49$ and 4.38 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}$), 3.91 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,3-\mathrm{H}$), $3.39(1 \mathrm{H}$, dd, J 9.2, 6.1, CHHO), 3.25 (1 H , irregular t, J ca 8.7, CHHO), $2.48\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\beta}, 4-\mathrm{H}\right), 2.05\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.5,2-\mathrm{H}^{\circ}\right), 1.85(1 \mathrm{H}$, dd, J 8.6, 5.5, 5-H), 1.60-1.40 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$) (Found: C, 73.52; $\mathrm{H}, 6.76 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 73.47 ; \mathrm{H}, 6.95 \%$).

(1S,3S,4R ,5S)-3-B enzyloxy-4-benzyloxymethyl-1-(2trimethylsilylethoxyformamido)bicyclo[3.1.0]hexane 19

A stirred solution of 18 ($3.9 \mathrm{~g}, 11.06 \mathrm{mmol}$) in freshly distilled toluene ($80 \mathrm{~cm}^{3}$) maintained at $0{ }^{\circ} \mathrm{C}$ under argon was treated with triethylamine ($1.85 \mathrm{~cm}^{3}, 13.28 \mathrm{mmol}$) and diphenylphosphoryl azide (DPPA , $2.85 \mathrm{~cm}^{3}, 13.28 \mathrm{mmol}$). A fter the addition, the ice bath was removed and the reaction was allowed to continue at room temperature for 2 h . Then, the reaction mixture was heated (oil bath, $80^{\circ} \mathrm{C}$) for 2 h and 2-trimethylsilylethanol ($3.2 \mathrm{~cm}^{3}, 22.13 \mathrm{mmol}$) was added. The reaction was allowed to continue at $80^{\circ} \mathrm{C}$ for 2 h , and was later maintained overnight at room temperature. The solvent was removed under reduced pressure and the residue was dissolved in EtOAc ($400 \mathrm{~cm}^{3}$), Extraction of the organic solution with brine ($3 \times 30 \mathrm{~cm}^{3}$) was performed until a neutral pH of the washings was obtained. The organic solution was dried ($\mathrm{M} \mathrm{SO}_{4}$) and concentrated under reduced pressure The resulting syrup was purified by column chromatography (silica gel, 10\% EtOA c in hexanes) to give compound 19 as a yellow syrup ($3.3 \mathrm{~g}, 64.4 \%$); $[a]_{0}^{24}-4.7$ (c 1.52 in CHCl_{3}); $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 3333,2952$ and 1715 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 7.36-7.15(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}), 4.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.39\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 12.0, \mathrm{PhCH}_{2} \mathrm{O}\right)$, $4.11\left[2 \mathrm{H}, \mathrm{q}, \mathrm{J} 9.2,7.7, \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{2}\right.$], $3.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7,3-\mathrm{H})$, $3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 2.35\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\beta}, 4-\mathrm{H}\right), 2.10(1 \mathrm{H}, \mathrm{d}$, J $\left.13.9,2-\mathrm{H}^{\mathrm{a}}\right), 1.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.9,5.5,5-\mathrm{H}), 1.21(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.8$, $6-\mathrm{H}^{\text {endo }}$), $\left.0.95(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH})_{2}\right), 0.84(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 7.3,5.3$, $<1,6-\mathrm{H}^{\mathrm{exo}}$), $0.00\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right]$ (Found: C, 69.28; H, 7.96. $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{4}$ Si requires $\mathrm{C}, 69.34 ; \mathrm{H}, 7.97 \%$).

($15,3 S, 4 \mathrm{R}, 5 \mathrm{~S}$)-3-Benzyloxy-4-benzyloxymethyl-1-aminobicyclo[3.1.0] hex ane 20

A stirred solution of 19 ($0.29 \mathrm{~g}, 0.62 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{THF}\left(10 \mathrm{~cm}^{3}, 4: 1\right)$ was treated with tetrabutylammonium fluoride (1 m in THF; $5 \mathrm{~cm}^{3}$) under a blanket of argon at room temperature. The temperature was then raised to $70^{\circ} \mathrm{C}$, and the reaction was finished after 4 h . The solvent was removed under reduced pressure and the residue was chromatographed (silica gel, 5 to $10 \% \mathrm{M} \mathrm{eOH}$ in CHCl_{3}) to give compound $20(0.20 \mathrm{~g}, 99 \%)$ as a clear yellow syrup; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, $\mathrm{M} \mathrm{e}_{4} \mathrm{Si}$) 7.35-7.21 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.51(2 \mathrm{H}, \mathrm{AB}$ q, J 12.1, $\mathrm{PhCH}_{2} \mathrm{O}$), $4.38\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}\right.$, J 12.4, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 3.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.7, 3-H), $3.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.3,5.8, \mathrm{CH}$ HO), $3.31(1 \mathrm{H}$, irregular t, CHHO), $2.45\left(2 \mathrm{H}, \mathrm{br}\right.$ s, NH_{2}), $2.31(1 \mathrm{H}$, irregular t, $4-\mathrm{H})$, $2.15\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.8,2-\mathrm{H}^{\mathrm{a}}\right), 2.01\left(1 \mathrm{H}\right.$, ddd, J 13.8, 6.7, 1.9, 2-H ${ }^{\beta}$), 1.11 (1 H, dd, J 8.9, 3.9, 5-H), 1.04 (1 H , irregular t, J ca. 4.3, 6$\mathrm{H}^{\text {endo }}$), 0.80 (1 H , ddd, J $8.9,4.5,1.9,6-\mathrm{H}^{\text {exo }}$). This amine was used immediately for the construction of all heterocycliccontaining carbocyclic nucleosides (vide infra).

(1S,3S,4R ,5S)-3-B enzyloxy-4-benzyloxymethyl-1-(5-methyl-2,4-diox0-1,2,3,4-tetrahydropyrimidin-1-yl)bicyclo[3.1.0]

 hexane 23In a flame-dried flask, a solution of 3-methoxy-2methylacryloyl chloride ($1.44 \mathrm{~g}, 10.69 \mathrm{mmol}$) in toluene ($40 \mathrm{~cm}^{3}$) was refluxed with silver cyanate ($2.24 \mathrm{~g}, 14.9 \mathrm{mmol}$) under argon for 40 min . The solution was rapidly decanted from the silver salt, and the solvent was evaporated under reduced pressure in a rotary evaporator. The residual oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 cm^{3}), and the solution was added dropwise over the course of 10 min directly to a cold $\left(-60^{\circ} \mathrm{C}\right)$ solution of amine $20(1.73 \mathrm{~g}$, $5.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$. Thetemperature was allowed to warm up to room temperature and the mixture was stired for 24
h to complete the coupling. The solvent was evaporated under reduced pressure and the residue was chromatographed (silica gel, hexanes-EtOA c, 2:1) to give the intermediate acryloyl urea 21 as a colourless syrup ($2.13 \mathrm{~g}, 85.5 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M}_{4} \mathrm{Si}\right) 8.90$ ($1 \mathrm{H}, \mathrm{s}$, imideN H), 7.90 ($1 \mathrm{H}, \mathrm{s}$, amideN H), $7.38-7.20$ ($11 \mathrm{H}, \mathrm{m}$, $\mathrm{C}=\mathrm{CH} \mathrm{OM} \mathrm{e}, \mathrm{ArH}), 4.55\left(2 \mathrm{H}, \mathrm{AB}\right.$ q, J 12.2, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.40(2 \mathrm{H}$, AB q, J 12.0, PhCH ${ }_{2} \mathrm{O}$), 3.91 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3,3-\mathrm{H}$), 3.82 ($3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 3.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 2.36\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 2-\mathrm{H}^{\beta}\right), 2.20(1$ $\mathrm{H}, \mathrm{d}, \mathrm{J} 13.8,2-\mathrm{H}^{\mathrm{a}}$), $1.75\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.6, \mathrm{CH}_{3}\right), 1.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.3$, $4.2,5-\mathrm{H}), 1.26\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.9,6-\mathrm{H}^{\text {endo }}\right), 0.92\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\text {exo }}\right)$. Without any further purification, a stirred solution of 21 (2.12 $\mathrm{g}, 4.57 \mathrm{mmol})$ in ethanol ($30 \mathrm{~cm}^{3}$) was treated with 2 m HCl (6 cm^{3}) and gently refluxed for 30 h to complete the cyclization to the pyrimidine ring. The solvent was removed under reduced pressure at room temperature and the resulting residue was dissolved in EtOAc ($300 \mathrm{~cm}^{3}$) and washed successively with 5% $\mathrm{NaHCO}_{3}\left(2 \times 50 \mathrm{~cm}^{3}\right)$ and brine $\left(2 \times 150 \mathrm{~cm}^{3}\right)$ until a neutral pH of the washings was obtained. The organic solution was dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and evaporated to dryness to give 23 (1.95 g , 98%) as a white foam which was deemed pure enough to be used for the final deprotection reaction. A n analytical sample of 23 (ca.. 30 mg) was obtained after chromatography (silica gel, hexanes-EtOA c, 2:1) giving a white solid, $\mathrm{mp} 70-72^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{24}$ -19.0 (c 1.44 in CHCl_{3}); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3649,3179,3032$, 2925, 1693 and 1608; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e} \mathrm{e}_{4} \mathrm{Si}\right) 8.42$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), $7.40-$ 7.20 ($11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}, 6-\mathrm{H}$), 4.55 ($2 \mathrm{H}, \mathrm{AB}$ q, J 12.2, $\mathrm{PhCH}_{2} \mathrm{O}$), $4.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.98(1 \mathrm{H}, \mathrm{brt}, 3-\mathrm{H})$, $3.69(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{O}$), 2.41(1H, t, J 5.7, 4-H), $2.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.3,2-\mathrm{H}), 1.69(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.62(1 \mathrm{H}$, irregulart, J ca. $4,5-\mathrm{H}), 1.51(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.3$, 6 - $\mathrm{H}^{\text {endo }}$), 1.10 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.4,5.5,6-\mathrm{H}^{\text {exo }}$) (Found: C, 71.14; H, $6.57 ; \mathrm{N}, 6.35 . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 71.45 ; \mathrm{H}, 6.57$; N, 6.41\%).

(1S,3S,4R ,5S)-3-H ydrox y-4-hydroxymethyl-1-(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)bicyclo[3.1.0]hexane $6 \dagger$

To a suspension of palladium black (0.95 g) in $\mathrm{M} \mathrm{eOH}\left(50 \mathrm{~cm}^{3}\right)$ was added a solution of compound $23(0.96 \mathrm{~g}, 2.21 \mathrm{mmol})$ and formic acid ($2.5 \mathrm{~cm}^{3}$). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 2 h and filtered through a pad of Celite. The cake was washed thoroughly with methanol ($3 \times 15 \mathrm{~cm}^{3}$) and the filtrate was evaporated under reduced pressure to give the title compound as a white foam. Chromatographic purification (silica gel, $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1$) produced 6 as a white solid (0.486 g , 87.72%); mp 206-207 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{6} 206-206.4^{\circ} \mathrm{C}$); $[a]_{\mathrm{D}}^{25}-47.7$ (c 0.58 in MeOH); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3401,3161,2926,1773,1694$ and 1578; $\left.\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{H} \mathrm{z},{ }^{2} \mathrm{H}\right]_{6} \mathrm{D} \mathrm{M} \mathrm{SO}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 11.12$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 7.45 ($1 \mathrm{H}, \mathrm{s}, \mathrm{b}^{\prime}-\mathrm{H}$) , $4.70(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.2, \mathrm{OH}), 4.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.1, \mathrm{OH})$, $4.02(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 5.4,3-\mathrm{H}), 3.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 2.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 13.1, 6.7, 2-H ${ }^{\beta}$), $1.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.1,2-\mathrm{H}^{\alpha}\right), 1.88(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.1,4-$ H), $1.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.3,4.7,5-\mathrm{H}), 1.34(1 \mathrm{H}, \mathrm{t}$, J $\left.\left.4.9,6-\mathrm{H}^{\text {endo }}\right), 1.01\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\text {exo }}\right) ; \delta_{\mathrm{c}}\left(62.9 \mathrm{M} \mathrm{Hz},{ }^{[}{ }^{2} \mathrm{H}\right]_{6} \mathrm{D} \mathrm{M} \mathrm{SO}\right)$ $11.94\left(\mathrm{CH}_{3}\right), 18.31(6-\mathrm{C}), 26.9(5-\mathrm{C}), 47.90(2-\mathrm{C}), 52.53(4-\mathrm{C})$, $62.99\left(\mathrm{CH}_{2} \mathrm{OH}\right), 73.03(3-\mathrm{C}), 108.53\left(5^{\prime}-\mathrm{C}\right), 141.67\left(6^{\prime}-\mathrm{C}\right)$, 151.02 ($2^{\prime}-\mathrm{C}$), 164.07 ($4^{\prime}-\mathrm{C}$); m/z (FAB) 253 ($\mathrm{M} \mathrm{H}^{+}, 100 \%$), 127 ($\mathrm{B}+2 \mathrm{H}, 15$) (Found: C, 56.55; H, 6.26; N, 10.73. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$. $0.10 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 56.72 ; \mathrm{H}, 6.42 ; \mathrm{N}, 11.03 \%$),

(1S,3S,4R ,5S)-3-H ydrox y-4-hydroxymethyl-1-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)bicyclo[3.1.0]hexane 7

In a similar manner as described for the synthesis of 23, 3ethoxyacryloyl chloride ($0.333 \mathrm{~g}, 2.47 \mathrm{mmol}$) was reacted with silver cyanate ($0.556 \mathrm{~g}, 3.71 \mathrm{mmol}$) in toluene ($7 \mathrm{~cm}^{3}$). The resulting acyl isocyanate was reacted with amine $20(0.4 \mathrm{~g}, 12.4$ mmol) to give intermediate $22(0.50 \mathrm{~g}, 87 \%)$, which after purification by column chromatography (silica gel, hexanes-EtOA c, 3:1) was obtained as a light yellow syrup; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{Me} \mathrm{e}_{4} \mathrm{Si}\right)$

[^0]9.51 ($1 \mathrm{H}, \mathrm{s}$, imide N H), 8.90 ($1 \mathrm{H}, \mathrm{s}$, amide N H), 7.61 ($1 \mathrm{H}, \mathrm{d}$, J 12.2, COCH=CHOEt), 7.35-7.22 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 5.31 (1 H , d, J $12.2, \mathrm{COCH}=\mathrm{CHOEt}), 4.53\left(2 \mathrm{H}, \mathrm{AB}\right.$ q, J 11.9, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right)$, $4.40\left(2 \mathrm{H}, \mathrm{AB}\right.$ q, J 12.1, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 3.90(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 2.41\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 2-\mathrm{H}^{\mathrm{B}}\right)$, $2.21\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.8,2-\mathrm{H}^{\mathrm{a}}\right.$) $1.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.0,4.4,5-\mathrm{H}$), 1.28 (1 $\mathrm{H}, \mathrm{t}, \mathrm{J} 4.9,6-\mathrm{H}^{\text {endo }}$), $1.21\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.97(1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}^{\text {exo }}$). Without further purification, a stirred solution of 22 ($0.340 \mathrm{~g}, 0.73 \mathrm{mmol}$) in ethanol ($15 \mathrm{~cm}^{3}$) was treated with 2 m $\mathrm{HCl}\left(2.5 \mathrm{~cm}^{3}\right)$ and cyclization to the pyrimidine ring was performed in a similar manner as for 23. A fter work-up and purification by column chromatography (silica gel, acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $5: 1)$, compound $24(0.2609 \mathrm{~g}, 85 \%)$ was obtained as a colourless syrup; $[a]_{0}^{24}-22.7$ (c 1 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3200$, 2960,1710 and $1600 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 8.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, 7.40-7.20 (11 H , m, 6'-H, ArH), 5.39 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.9,2.2,5^{\prime}-\mathrm{H}$), $4.52\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 11.4, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.40(2 \mathrm{H}, \mathrm{AB}$ q, J 12.4 , PhCH 2 O), $3.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3,3-\mathrm{H}), 3.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 2.42$ ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.5,4-\mathrm{H}$), 2.35-2.20 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), $1.65(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.5$, $5-\mathrm{H}), 1.55\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.3,6-\mathrm{H}^{\text {endo }}\right.$), $1.11\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\text {exo }}\right)$ (Found: C, 65.99; H, 5.88. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, 66.06; H, 6.65%). A fraction of this syrup ($0.080 \mathrm{~g}, 0.191 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$, cooled to $-78{ }^{\circ} \mathrm{C}$, and treated under a blanket of argon with a solution of BCl_{3} (1 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 1.53 \mathrm{~cm}^{3}$). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 6 h , and then for 1 h at $-30^{\circ} \mathrm{C}$. The mixture was cooled again to $-78^{\circ} \mathrm{C}$ then $\mathrm{MeOH}\left(6 \mathrm{~cm}^{3}\right)$ was added to it and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then allowed to reach room temperature conditions. The solvent was removed under reduced pressure and the residue was evaporated thrice after the addition of $5 \mathrm{~cm}^{3}$ portions of MeOH . The crude foam was dissolved in $\mathrm{MeOH}\left(1.2 \mathrm{~cm}^{3}\right)$ and treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2.5 \mathrm{~cm}^{3}\right)$ until cloudiness was observed. A fter the solution had been left to stand in the freezer, the precipitated solid was separated and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~cm}^{3}\right)$ and petrol ($3 \mathrm{~cm}^{3}$) to give the target compound $7(0.015 \mathrm{~g}, 33 \%)$ as a white powder; mp 212$214{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{25}-33.6$ (c 0.25 in M eOH); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 7.68$ (1 H, d, J $7.9,6^{\prime} \mathrm{H}$), $5.61\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9,5^{\prime}-\mathrm{H}\right), 4.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9$, $3-\mathrm{H}), 3.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.36(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 13.4,6.9,2.2$, 2$\mathrm{H}^{\beta}$), $2.06\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\mathrm{a}}, 4-\mathrm{H}\right), 1.74(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 9.7,4.9,1.1$, $5-\mathrm{H}), 1.45\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.2,6-\mathrm{H}^{\text {endo }}\right.$), 1.15 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 9.7,5.4,2.3$, $6-\mathrm{H}^{\text {exo }}$); $\delta_{\mathrm{c}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 19.18(6-\mathrm{C}), 28.96(5-\mathrm{C}), 41.19$ (2-C), 54.00 (4-C), $65.09\left(\mathrm{CH}_{2} \mathrm{OH}\right), 75.48(3-\mathrm{C}), 102.58\left(5^{\prime}-\mathrm{C}\right), 147.80\left(6^{\prime}-\right.$ C), 153.20 ($2^{\prime}-\mathrm{C}$), 165.40 ($4^{\prime}-\mathrm{C}$); m/z (FAB) (relative intensity) $239\left(\mathrm{M} \mathrm{H}^{+}, 100\right), 113(\mathrm{~B}+2 \mathrm{H}, 15)$ [Found (FAB): 239.1039. Calc. for $\left.\mathrm{MH}^{+}, 239.1032\right]$.

($1 \mathrm{~S}, \mathbf{3 S}, 4 \mathrm{R}, 5 \mathrm{~S}$)-3-H ydroxy-4-hydroxymethyl-1-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)bicyclo[3.1.0]hexane 8
 A solution of 24 ($0.190 \mathrm{~g}, 0.454 \mathrm{mmol}$), triethylamine (1.45

 $\mathrm{mm}^{3}, 10.44 \mathrm{mmol}$) and $1 \mathrm{H}-1,2,4$-triazole ($0.705 \mathrm{~g}, 10.22 \mathrm{mmol}$) in acetonitrile ($10 \mathrm{~cm}^{3}$) was treated at room temperature with $\mathrm{POCl}_{3}\left(104 \mathrm{~mm}^{3}, 1.11 \mathrm{mmol}\right)$. The reaction mixture was stirred for 2 h at room temperature and then poured onto a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(51 \mathrm{~cm}^{3}\right.$), triethylamine ($5.1 \mathrm{~cm}^{3}$) and saturated aqueous $\mathrm{NaHCO}_{3}\left(15.5 \mathrm{~cm}^{3}\right)$. The organic layer was separated, dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure to give a residue that was chromatographed through a short column (silica gel, ether) to give the triazole intermediate as a white foam; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 9.21$ ($1 \mathrm{H}, \mathrm{s}$, triazole), $8.09(1 \mathrm{H}$, s, triazole), 7.98 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.1,6^{\prime}-\mathrm{H}\right), 7.35-7.22(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $6.70\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.1,5^{\prime}-\mathrm{H}\right), 4.55\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.41(2 \mathrm{H}$, $\left.\mathrm{AB} \mathrm{q}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.4,3-\mathrm{H}), 3.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$, $2.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.5,4-\mathrm{H}), 2.40(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.70(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$, $\left.6-\mathrm{H}^{\text {endo }}\right), 1.20\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\text {exo }}\right)$. This material was dissolved in dioxane $\left(6 \mathrm{~cm}^{3}\right)$ and stirred with concentrated aqueous ammonia ($1.5 \mathrm{~cm}^{3}$) for 24 h at $40^{\circ} \mathrm{C}$. A fter such time, analysis by TLC still showed unreacted starting material. Additional concentrated aqueous ammonia ($1.6 \mathrm{~cm}^{3}$) was added and stirring was continued for an additional 24 h to complete the reaction. Thesolvent was evaporated under reduced pressure and the residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ and water ($15 \mathrm{~cm}^{3}$). The two layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 25 \mathrm{~cm}^{3}\right)$. Theorganic phase was dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and the solvent evaporated. The residue was purified by flash column chromatography (silica gel, $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound 25 ($0.064 \mathrm{~g}, 34 \%$) as a colourless syrup; $[a]_{d}^{24}-36.1$ (c $1, \mathrm{CHCl}_{3}$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3609-3445$, 2924, 1771 and $1605 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e} \mathrm{e}_{4} \mathrm{Si}\right) 7.35-7.20\left(11 \mathrm{H}, \mathrm{m}, 6^{\prime}-\right.$ $\mathrm{H}, \mathrm{ArH}), 5.48\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3,5^{\prime}-\mathrm{H}\right), 4.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.40$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5,3-\mathrm{H}), 3.70(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{O}$), $2.42(1 \mathrm{H}$, irregular t, J ca. $6.2,4-\mathrm{H}), 2.31(2 \mathrm{H}, \mathrm{m}, 2-$ H), $1.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.4,4.7,5-\mathrm{H}), 1.48\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.2,6-\mathrm{H}^{\text {endo }}\right.$), $1.01\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\mathrm{exo}}\right.$). A fraction of this syrup ($0.050 \mathrm{~g}, 0.119$ $\mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ and treated with $\mathrm{BCI}_{3}(1$ m in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0.96 \mathrm{~cm}^{3}$) using the same protocol employed for the deprotection of $\mathbf{2 4}$. The target compound $8(0.025 \mathrm{~g}, 89 \%)$ was obtained as a white powder after crystallization from $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{mp} 261-262^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{25}-30$ (c 0.18, MeOH); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 8.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7,6^{\prime}-\mathrm{H}\right), 6.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7$, 5'-H), $4.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,3-\mathrm{H}), 3.71(2 \mathrm{H}, \mathrm{br}$ d, J 5.51, CH2OH), 2.40 ($\left.1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 13.5,7.0,1.9,2-\mathrm{H}^{\beta}\right), 2.18-2.04\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\beta}\right.$, 4-H), 1.70 (1 H, ddd, J $9.7,4.9,<1,5-\mathrm{H}$), 1.52 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.2,6-$ $\left.H^{\text {endo }}\right), 1.21\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\text {exo }}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 19.36(6-\mathrm{C}), 28.92(5-$ C), 40.91 ($2-\mathrm{C}$), 51.16 (1-C), $54.10(4-\mathrm{C}), 64.87\left(\mathrm{CH}_{2} \mathrm{OH}\right), 75.49$ (3-C), 94.74 ($5^{\prime}-\mathrm{C}$), 168.88 ($6^{\prime}-\mathrm{C}$); m/z (FA B) (relative intensity) 238 ($\mathrm{M} \mathrm{H}^{+}, 100$), 112 ($\mathrm{B}+2 \mathrm{H}, 25$) [Found: (FAB): 238.1221. Calc. for $\mathrm{M} \mathrm{H}^{+}, 238.1192$].

($15,3 \mathrm{~S}, 4 \mathrm{R}, 5 \mathrm{~S}$)-3-Benzyloxy-4-(benzyloxymethyl)-1-(6-chloro-purin-9-yl)bicyclo[3.1.0]hex ane 27

A stirred solution of carbocyclic amine 20 ($0.025 \mathrm{~g}, 0.077$ mmol), 4,6-dichloro-5-formamidopyrimidine ${ }^{14}$ ($0.015 \mathrm{~g}, 0.087$ mmol) and triethylamine ($183 \mathrm{~mm}^{3}, 1.314 \mathrm{mmol}$) in 1,4-dioxane $\left(4 \mathrm{~cm}^{3}\right)$ was stirred under gentle reflux for 24 h . A fter cooling, the solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, hexane-EtOAc, 3:1) to give compound 26 as a clear yellow syrup ($0.034 \mathrm{~g}, 92 \%$). This compound was immediately reacted with triethyl orthoformate $\left(2 \mathrm{~cm}^{3}\right)$ and 12 m hydrochloric acid $\left(43 \mathrm{~mm}^{3}\right)$ in DM F ($0.7 \mathrm{~cm}^{3}$), and the reaction mixture was stirred at room temperature for 2 days. The reaction was quenched with triethylamine $\left(0.3 \mathrm{~cm}^{3}\right)$ and the solvent was evaporated. The residue was purified by column chromatography [silica gel, hexane-EtOA c, $4: 1\left(200 \mathrm{~cm}^{3}\right)$ and hexaneEtOA c, $3: 1\left(100 \mathrm{~cm}^{3}\right)$] to give the chloro compound $27(0.034 \mathrm{~g}$, 47%) as a yellow syrup; $[a]_{0}^{24}-31.5$ (c 0.6 in CHCl_{3}); $v_{\text {max }}$ (neat)/ cm^{-1} 2926, 1590 and 1557; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 8.69\left(1 \mathrm{H}, \mathrm{s}, 8^{\prime}-\right.$ H), $8.11\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 7.40-7.20(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.61(2 \mathrm{H}, \mathrm{s}$, $\mathrm{PhCH}_{2} \mathrm{O}$), 4.43 ($2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}$), 4.02 ($1 \mathrm{H}, \mathrm{brt}, 3-\mathrm{H}$), 3.75 (2 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), $2.55(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.2,4-\mathrm{H}), 2.49(2 \mathrm{H}, \mathrm{br}$ d, J 3.2, 2H), 1.85 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.2,4.7,5-\mathrm{H}$), 1.76 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.2,6-\mathrm{H}^{\text {endo }}$), 1.40 (1 H , dd, 9.2, 5.6, $6-\mathrm{H}^{\text {exo }}$) (Found: C, 67.19; H, 5.46. $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClN} \mathrm{A}_{2} \cdot \cdot 0.1 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 67.40 ; \mathrm{H}, 5.48$).

($15,3 S, 4 \mathrm{R}, 5 \mathrm{~S}$)-3-B enzyloxy-4-(benzyloxymethyl)-1-(6-amino-purin- 9 -yl)bicyclo[3.1.0]hex ane 28

A solution of $\mathbf{2 7}$ ($0.034 \mathrm{~g}, 0.074 \mathrm{mmol}$) in saturated methanolic ammonia ($5 \mathrm{~cm}^{3}$) was heated in a sealed tube at $80^{\circ} \mathrm{C}$ for 12 h . A fter cooling to room temperature, the solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, $3 \% \mathrm{MeOH}$ in EtOAc) to give 28 ($0.031 \mathrm{~g}, 97 \%$) as a whitesolid; mp $179-181^{\circ} \mathrm{C}$; $[a]_{0}^{24}-35.7$ (c 0.21 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{K} \mathrm{Br}^{2} / \mathrm{cm}^{-1} 3299,2862\right.$ and 1601; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, $\left.\mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 8.31\left(1 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{H}\right), 7.79\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 7.39-7.25(10 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 5.52\left(2 \mathrm{H}, \mathrm{brs}, \mathrm{NH}_{2}\right), 4.61\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.42(2$ $\mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}$), $4.02(1 \mathrm{H}, \mathrm{brt}, 3-\mathrm{H}), 3.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 2.54$ ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.4,4-\mathrm{H}), 2.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.2,2-\mathrm{H}), 1.85-1.67(2 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}, 6-\mathrm{H}^{\text {endo }}$), 1.38 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.4,5.5,6-\mathrm{H}^{\text {exo }}$) (Found: $\mathrm{C}, 70.55$; $\mathrm{H}, 6.21 . \mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 70.72 ; \mathrm{H}, 6.16 \%\right)$.

($1 \mathrm{~S}, 3 \mathrm{~S}, 4 \mathrm{R}, 5 \mathrm{~S}$)-3-H ydroxy-4-hydroxymethyl-1-(6-aminopurin-9yl)bicyclo[3.1.0]hexane 9

A solution of $28(0.026 \mathrm{~g}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was treated with $\mathrm{BCl}_{3}\left(1 \mathrm{~m}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 500 \mathrm{~mm}^{3}\right)$ and deblocked in the same manner as $\mathbf{2 4}$ and $\mathbf{2 5}$. The crude yellow solid was recrystallized from $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the target compound $9(0.014 \mathrm{~g}, 93 \%)$ as a white powder; $\mathrm{mp} 282-285^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}$ -30.0 (c 0.2 in M eOH); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3650,3620,1627$ and $1593 ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{Me}_{4} \mathrm{Si}\right) 8.30\left(1 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{H}\right), 8.22\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$, $4.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,3-\mathrm{H}), 3.72\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9, \mathrm{CH}_{2} \mathrm{O}\right), 2.41(1 \mathrm{H}$, ddd, J 14.2, 7.0, 1.9, 2-H ${ }^{\beta}$), $2.20\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.2,2-\mathrm{H}^{\alpha}\right.$), 2.10 (1 H, t, J 5.9, 4-H), 1.90 (1 H, dd, J 9.5, 4.8, 5-H), 1.48-1.34 (2 H, $\mathrm{m}, 6-\mathrm{H}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 18.47(6-\mathrm{C}), 27.21(5-\mathrm{C}), 42.06$ (2-C), 44.25 (1-C), $52.45(4-\mathrm{C}), 64.59\left(\mathrm{CH}_{2} \mathrm{OH}\right), 75.30(3-\mathrm{C}), 145.05\left(8^{\prime}-\mathrm{C}\right)$, $146.43\left(2^{\prime}-\mathrm{C}\right)$; m/z (FAB) (relative intensity) $262\left(\mathrm{M} \mathrm{H}^{+}, 100\right)$, $136(\mathrm{~B}+2 \mathrm{H}, 25)$ (Found: C, 47.86; $\mathrm{H}, 5.39 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}$. $2.25 \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 47.75 ; \mathrm{H}, 5.75 \%\right)$.

($1 \mathrm{~S}, \mathbf{3 S , 4 R}, 5 \mathrm{~S}$)-3-B enzyloxy-4-(benzyloxymethyl)-1-(2-formamido-6-chloropurin-9-yl)bicyclo[3.1.0]hexane 30

A solution of carbocyclic amine $20(0.165 \mathrm{~g}, 0.510 \mathrm{mmol}), 4,6-$ dichloro-2,5-diformamidopyrimidine ${ }^{14}(0.132 \mathrm{~g}, 0.561 \mathrm{mmol})$ and N, N-diisopropylethylamine ($0.358 \mathrm{~cm}^{3}, 2.053 \mathrm{mmol}$) in dry 1,4-dioxane ($10 \mathrm{~cm}^{3}$) was stirred at room temperature for 12 h and then refluxed for 30 min . The solvent was evaporated to dryness under reduced pressure and the residue was purified by column chromatography [silica gel, hexanes-EtOA c, 2:1 (100 cm^{3}) and hexanes-EtOA c, 1:1 (200 $\left.\mathrm{cm}^{3}\right)$] to give intermediate 29 ($0.194 \mathrm{~g}, 73 \%$) as a white solid, which was used without further purification in the following step. A solution of 29 ($0.194 \mathrm{~g}, 0.372 \mathrm{mmol}$) in diethoxymethyl acetate ($7 \mathrm{~cm}^{3}$) was stirred at $140^{\circ} \mathrm{C}$ under argon for 15 h . The mixture was cooled to room temperature and treated with $\mathrm{MeOH}\left(6 \mathrm{~cm}^{3}\right)$ and concentrated aqueous ammonia ($0.5 \mathrm{~cm}^{3}$) while stirring was continued. The solvent was evaporated to dryness and the residue was dissolved in EtOAc ($50 \mathrm{~cm}^{3}$) and extracted with water $\left(2 \times 30 \mathrm{~cm}^{3}\right)$ until neutral pH of the washings was obtained. The organic layer was dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$, filtered and evaporated to dryness. The resultant yellow solid was purified by flash chromatography (silica gel, hexanes-EtOA c mixtures, 19:1, 7:3 and $1: 1$) to give compound $\mathbf{3 0}(0.100 \mathrm{~g}, 53 \%)$ as a yellowish solid; mp 171-173 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{24}-26.7\left(\mathrm{c} 0.46\right.$ in CHCl_{3}); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3210,3063,2924,1794$ and 1598; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 9.45$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.5, \mathrm{HCONH}$), $7.98\left(1 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{H}\right), 7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 10.5, HCONH), 7.45-7.20 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 4.61 ($2 \mathrm{H}, \mathrm{s}$, Ph$\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.05(1 \mathrm{H}, \mathrm{brt}, \mathrm{J} 3.3,3-\mathrm{H}), 3.70$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), $2.53(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.1,4-\mathrm{H}), 2.43(2 \mathrm{H}, \mathrm{brd}, \mathrm{J} 4.3$, $2-\mathrm{H}), 1.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.6,4.8,5-\mathrm{H}), 1.71\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.2,6-\mathrm{H}^{\text {endo }}\right.$), 1.34 (1 H , dd, J 9.5, 5.7, 6-H exo) (Found: C, 64.33; H, 5.27; N, 13.92. $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{CIN}_{5} \mathrm{O}_{3}$ requires $\mathrm{C}, 64.35 ; \mathrm{H}, 5.20 ; \mathrm{N}, 13.90 \%$).

($15,3 S, 4 \mathrm{R}, 5 \mathrm{~S}$)-3-B enzyloxy-4-benzyloxymethyl-1-(2-amino-6-oxo-1,9-dihydro-6H -purin-9-yl) bicyclo[3.1.0]hexane 31

A solution of compound $30(0.087 \mathrm{~g}, 0.172 \mathrm{mmol})$ in formic acid $\left(4 \mathrm{~cm}^{3}\right)$ was refluxed for 2 h . A fter cooling to room temperature, the solvent was evaporated under reduced pressure. The residue was dissolved in $\mathrm{MeOH}\left(6 \mathrm{~cm}^{3}\right)$, treated with concentrated aqueous ammonia (5 drops) and stirred at $40^{\circ} \mathrm{C}$ for 1 h. The solvent was evaporated and the resulting oil was purified by column chromatography [silica gel, EtOAc ($50 \mathrm{~cm}^{3}$), followed by $5 \% \mathrm{MeOH}-E t O A c\left(100 \mathrm{~cm}^{3}\right.$), followed by 10% $\mathrm{M} \mathrm{eOH}-\mathrm{CHCl}_{3}\left(50 \mathrm{~cm}^{3}\right)$] to give compound $31(0.074 \mathrm{~g}, 94 \%)$ as a white solid; $\mathrm{mp} 248-250^{\circ} \mathrm{C}$; $[a]_{D^{24}}^{24}-21.7$ (c 0.47 in $\mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{SO}$); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3588-3165,2925,1751$ and $1600 ; \delta_{\mathrm{H}}\left(\left[^{2} \mathrm{H}\right]_{6^{-}}\right.$ DM SO, M eqsi) $10.56\left(1 \mathrm{H}, \mathrm{br}\right.$ s, NH), $7.51\left(1 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{H}\right), 7.35-$ $7.22(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.40\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.57(2 \mathrm{H}, \mathrm{s}$, $\mathrm{PhCH}_{2} \mathrm{O}$), $4.42\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, \mathrm{J} 12.2, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.96(1 \mathrm{H}, \mathrm{m}, 3-$ H), $3.68\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 6.8, \mathrm{CH}_{2} \mathrm{O}\right), 2.50-2.30(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 2-\mathrm{H})$, 1.76 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.3,4.6,5-\mathrm{H}$), 1.37 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.0,6-\mathrm{H}^{\text {endo }}$), 1.23
($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.3,5.3,6-\mathrm{H}^{\text {exo }}$) (Found: C, 67.72; H, 5.84; N, 15.20. $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{3} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 67.98 ; \mathrm{H}, 5.96 ; \mathrm{N}, 15.24 \%$).
($\mathbf{1 S}, \mathbf{3 S}, \mathbf{4 R}, 5 \mathrm{~S}$)-3-H ydroxy-4-hydroxymethyl-1-(2-amino-6-oxo-1,9-dihydro-6H -purin-9-yl)bicyclo[3.1.0]hexane 10
A suspension of palladium black (25 mg) in $\mathrm{M} \mathrm{eOH}\left(1 \mathrm{~cm}^{3}\right)$ was stirred at room temperature under argon, and a solution of compound $31(0.035 \mathrm{~g}, 0.076 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{HCOOH}(0.5$ $\mathrm{cm}^{3}: 1.5 \mathrm{~cm}^{3}$) was added to it dropwise. A fter the addition, the reaction mixture was gently refluxed ($40^{\circ} \mathrm{C}$) for 2 h . A fter cooling to room temperature, the mixture was filtered through a pad of Celite which was washed thoroughly with $\mathrm{MeOH}(3 \times 10$ cm^{3}). The solvent was evaporated under reduced pressure and the residue was dissolved in $\mathrm{CCl}_{4}\left(10 \mathrm{~cm}^{3}\right)$ and evaporated again. This operation was repeated three times with CCl_{4} after which compound $10(0.018 \mathrm{~g}, 85.7 \%)$ was obtained as a white solid; mp 271-275 ${ }^{\circ} \mathrm{C}$ (decomp.); [$\left.a\right]_{\mathrm{D}}^{25}-12.0$ (c 0.15 in $\mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{SO}$); $\delta_{\mathrm{H}}\left(\left[^{2} \mathrm{H}\right]_{6} \mathrm{DM} \mathrm{SO}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 10.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.62\left(1 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{H}\right), 6.42\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right.$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.90\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.5, \mathrm{CH}_{2} \mathrm{OH}\right.$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.70$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8, \mathrm{CHOH}$, exchanges with $\mathrm{D}_{2} \mathrm{O}$), $4.10(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$, becomes a d, J 6.1 after $\mathrm{D}_{2} \mathrm{O}$ exchange), $3.60(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.8$, $\mathrm{CH}_{2} \mathrm{OH}$, becomes a d, J 6.1 after $\mathrm{D}_{2} \mathrm{O}$ exchange), $2.25(1 \mathrm{H}$, dd, J 13.0, 6.3, 2-H ${ }^{\beta}$), $2.10\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.1,2-\mathrm{H}^{\mathrm{a}}\right.$), $1.95(1 \mathrm{H}, \mathrm{t}$, J 6.0, 4-H), 1.72 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.2,4.5,5-\mathrm{H}$), $1.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.8$, $\left.6-\mathrm{H}^{\text {endo }}\right), 1.15\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4,4.8,6-\mathrm{H}^{\text {exo }}\right)$; $\delta_{\mathrm{c}}\left({ }^{2}{ }^{2} \mathrm{H}\right]_{6} \mathrm{D}$ M SO) 17.30 ($6-C$), 25.76 ($5-C$), 41.57 (1-C), 42.27 (4-C), 52.27 (2-C), 63.27 $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 73.18(3-\mathrm{C}), 116.97\left(5^{\prime}-\mathrm{C}\right), 137.70\left(8^{\prime}-\mathrm{C}\right), 152.06$ ($4^{\prime}-\mathrm{C}$), $153.39\left(2^{\prime}-\mathrm{C}\right), 156.72\left(6^{\prime}-\mathrm{C}\right) ; \mathrm{m} / \mathrm{z}$ (FAB) (relative intensity) $300\left(\mathrm{M}+\mathrm{Na}^{+}, 50\right), 270\left(\mathrm{M} \mathrm{H}^{+}, 51\right), 152(\mathrm{~B}+2 \mathrm{H}, 19)$ [Found (FA B): 278.1247. C alc. for $\mathrm{M} \mathrm{H}^{+}, 278.1253$].

Acknowledgements

The authors thank Dr Christopher K .-H . Tseng, NIA ID, N IH for arranging the biological tests and Dr James A. K elly of the Laboratory of M edicinal Chemistry (LMC) for mass spectral data. A ntiviral testing was performed by Dr Earl K ern of the U niversity of Alabama at Birmingham and was supported by U SPH S Contract N 01-AI-35177 from the N ational Institute of Allergy and Infectious Diseases, NIH.

R eferences

1 The concept of pseudorotation was introduced and applied for the first time to substituted furanoses by C. Altona and M . Sundaralingam, J. A m. C hem. Soc., 1972, 94, 8205.
2 V. E. M arquez, M. A. Siddiqui, A. Ezzitouni, P. Russ, J. Wang, R. W. Wagner and M . D. M atteucci, J. M ed. Chem., 1996, 39, 3739.

3 K .-H. Altmann, R . K esselring, E. Francotte and G. Rihs, Tetrahedron Lett., 1994, 35, 2331.
4 C. K.-H. Tseng, NIAID, NIH, personal communication.
5 M. A. Siddiqui, H. Ford, Jr, C. George and V. E. M arquez, Nucleosides Nucleotides, 1996, 15, 235.
6 K .-H. Altmann, R. Imwinkelried, R. K esselring and G. Rih, Tetrahedron Lett., 1994, 35, 7625.
7 A. Ezzitouni, J. J. Barchi, Jr and V. E. M arquez, J. Chem. Soc., Chem. Commun., 1995, 1345.
8 K. Biggadike, A. D. Borthwick, A. M. Exall, B. E. Kirk, S. M. Roberts, P. Youds, A. M. Z. Slawin and D. J. Williams, J. Chem. Soc., C hem. Commun., 1987, 255.

9 K . Biggadike, A. D. Borthwick, D. E vans, A . M . Exall, B. E. K irk, S. M. Roberts, L. Stephenson and P. Youds, J. Chem. Soc., Perkin Trans. 1, 1988, 549.
10 R . Okazaki, J. N iwa and S. K ato, Bull. C hem. Soc.J pn., 1988, 61, 1619. 11 T. Shiori, K . N inomiya and S. Y amada, J. A m. Chem. Soc., 1972, 94, 6203.

12 T. F. Shealy and C. A. O'D ell, J. H eterocycl. C hem., 1976, 13, 1015. 13 K. Divakar and C. B. R eese, J. Chem. Soc., PerkinTrans. 1, 1982, 1171. 14 M . R . H arnden, P. G. Wyatt, M. R. Boyd and D. J. Sutton, J. M ed. C hem., 1990, 33, 187.

Paper 6/04352F
Received 24th J une 1996
A ccepted 24th O ctober 1996
© C opyright 1997 by the Royal Society of Chemistry

[^0]: \dagger In the Experimental section, the numbering system for compounds 6-10 follows from their IUPAC names. Hence, $1^{\prime}-4^{\prime}$ given in the structures corresponds to $1-4$ in the systematic names.

